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ABSTRACT: Addition is one of the most basic operations performed in all computing units, including
microprocessors and digital signal processors. It 1s also a basic umt utilized in various complicated
algorithms of multiplication and division. Efficient implementation of an adder circuit usually revolves
around reducing the cost to propagate the carry between successive bit positions. Hence, a new high-
speed and area efficient adder architecture is proposed using pre-compute bitwise addition followed by
carry prefix computation logic to perform the three-operand binary addition that consumes substantially
less area, low power and drastically reduces the adder delay. Further, this project 1s enhanced by using
Modified carry bypass adder to further reduce more density and latency constraints. Modified carry skip
adder mtroduces simple and low complex carry skip logic to reduce parameters constraints.
KEYWORDS: Parallel Prefix, Brent - Kung, Kogge -Stone, Carry save addition, pre-compute bitwise
addition followed by carry prefix, Carry skip addition.

LINTRODUCTION:

Besides technological scaling, advances in the field of computer architecture have also contributed to
the exponential growth in performance of digital computer hardware. The f{lip-side of the rising
processor performance is an unprecedented increase in hardware and software complexity. Increasing
complexity leads to high development costs, difficulty with testability and verifiability, and less
adaptability. The challenge in front of computer designers is therefore to opt for simpler, robust, and
easily certifiable circuits. Computer arithmetic, here plays a key role aiding computer architects with this
challenge. It 1s one of the oldest sub-fields of computer architecture. The bulk of hardware in earlier
computers resided in the accumulator and other arithmetic/logic circuits. Successful operation of
computer arithmetic circuits was taken for granted and high performance of these circuits has been
routinely expected. This context has been changing due to various reasons. First, at very high clock
rates, the interfaces between arithmetic circuits and the rest of the processor become critical. Arithmetic
circults can no longer be designed and verified in isolation. Rather an integrated design optimization is
required. Second, optimizing arithmetic circuits to meet the design goals by taking advantage of the
strengths of new technologies, and making them tolerant to the weakness, requires a re-examination of
existing design paradigms. Finally, incorporation of higher-level arithmetic primitives mto hardware
makes the design, optimization and verification efforts highly complex and interrelated. The core of
every microprocessor, digital signal processor (DSP), and data processing application-specific integrated
circuit (ASIC) 1s its datapath. With respect to the most important design criteria; critical delay, chip size,
and power dissipation, the datapath 1s a crucial circuit component. The datapath comprises of various
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arithmetic units, such as comparators, adders, and multiplier [4]. The basis of every complex arithmetic
operation 1s binary addition. Hence, it can be concluded, that binary addition is one of the most
mmportant arithmetic operation. The hardware implementation of an adder becomes even more critical
due to the expensive carry-propagation step, the evaluation time of which is dependent on the operand
word length. The efficient implementation of the addition operation in an integrated circuit is a key
problem in VLSI design [8]. Productivity in ASIC design is constantly improved by the use of cell-based
design techniques - such as standard cells, gate arrays, and field programmable gate arrays (FPGA), and
low-level and high-level hardware synthesis [13]. This asks for adder architectures which result in
efficient cell-based circuit realizations which can easily be synthesized. Furthermore, they should
provide enough flexibility in order to accommodate custom timing and area constraints as well as to
allow the implementation of customized adders. The tasks of a VLSI chip are the processing of data
and the control of internal or external system components. This is typically done by algorithms which
are based on logic and arithmetic operations on data items [10]. Applications of arithmetic operations in
mtegrated circuits are manifold. Microprocessors and DSPs typically contain adders and multipliers in
their datapath. Special circuit units for fast division and square-root operations are sometimes included
as well. Adders, incrementers/decrementers, and comparators are often used for address calculation
and flag generation purposes controllers. ASICs use arithmetic units for the same purposes. Depending
on their application, they may even require dedicated circuit components for special arithmetic
operators, such as for finite field arithmetic used in cryptography, error correction coding, and signal

processing.

ILLITERATURE SURVEY: The Mult-Operand Adders are generally implemented in two methods
1.e Array Adders and Adder Tree structure. In Array Adder structure, two operands are added and
output is added with third operand and continues the chain of addition until to get final sum output. It
requires ‘K’ number of adder levels for addition of ‘K’ operands. But in case of Adder Tree structure
the number of levels to add ‘K’ operands is less than that of Array Adders. It groups ‘K’ number of
operands into sets of two operands. All the sets are added parallel in one level. The sum outputs from
first level again grouped into sets of two operands and perform addition. This process continues until to
get two operands and added in last level to obtain final sum. In each level it reduces number of
operands to half. Therefore it requires log2 K levels. The Adder Tree structure 1s faster than Adder
Array structure with same resources consumed by both configurations. But the Array Adder is having
regular routing than Adder Tree structure. The Ripple Carry Adder (RCA) or Carry Look Ahead
Adder (CLA) are two general Carry Propagate Adders used in the above methods 1.e. Array Adder,
Adder Tree is Carry Propagate Adder. The delay of their CPA depends on bit length of operand. For
N-bit operand the of RCA proportional to N and for CLA it 1s proportional tolog2 N. To reduce the
delay these adders where implemented on FPGA by using dedicated carry chains [8]. The RCA on
FPGA using fast carry chain is simpler than any other CPA topologies at an expense of high hardware
cost [9]. The pipelining technique can be applied more effectively RCA [1]. The delay of Adder Tree
using CPA 1s high due to carry propagation along the bit length. Carry Save Adder tree is used as
another approach for implementing Multi-Operand Adders. Here the carry is directly propagated to
next level instead of propagating in the same as in case of CPA. The advantage of Carry Save Adder
(CSA) tree is utilized in ASIC implementation due to flexible routing. The critical path delay can be
minimized by optimizing the interconnection between Full Adders. But to implement on FPGA the
Ripple Carry Adder tree 1s preferred than CSA adder tree. When CSA tree 1s implemented on FPGA it
become slower than RCA tree due to routing delay of CSA. However, a straightforward implementation
on FPGAs [6] roughly requires double hardware than a carryripple adder, and does not exploit the fast
carry chain to improve speed.
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III. PRE-COMPUTE BITWISE ADDITION FOLLOWED BY CARRY PREFIX
COMPUTATION

This method presents a new adder technique and its VLSI architecture to perform the three-operand
addition in modular arithmetic. The proposed adder technique is a parallel prefix adder. However, it
has four-stage structures instead three-stage structures in prefix adder to compute the addition of three
binary mput operands such as bit-addition logic, base logic, PG (propagate and generate) logic and sum
logic. The logical expression of all these four stages are defined as follows,

Stage-1: Bit Addition Logic:

5 =ai b @o,

cvi =aj-bi+bi-ci +ci-a
Stage-2: Base Logic:
Gii =G =5 -cyi_1, Gpo=Gop=35;-Ciy
Poyy=P=5&cv_, Po=Ph=5&C,
Stage-3: PG (Generate and Propagate) Logic:

Gi.j = Gix + Prx - Ge—1:j,

Pij = Ppg - Py_1j
Stage-4: Sum Logic:

Si=(Pi® Gic10), So=Po, Cour = Gno
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Figl. Proposed three-operand adder; (a) First order VLSI architecture, (b) Logical diagram of bit
addition, base logic, sum logic, black-cell and grey-cell.
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The proposed VLSI architecture of the three-operand binary adder and its internal structure is shown
in Fig. The new adder technique performs the addition of three n-bit binary mputs in four different
stages. In the first stage (bit-addition logic), the bitwise addition of three n-bit binary mput operands is
performed with the array of full adders, and each full adder computes “sum (S_1)” and “carry (cy1)”
signals as highlighted in Fig. 3(a). The logical expressions for computing sum (S_ 1) and carry (cy1 )
signals are defined in Stage-1, and the logical diagram of the bit-addition logic 1s shown mn Fig. 3(b). In
the first stage, the output signal “sum (S_1)” bit of current full adder and the output signal “carry” bit of
its right-adjacent full adder are used together to compute the generate (Gi) and propagate (P1) signals in
the second stage (base logic). The computation of Gi and Pi signals are represented by the “squared
saltire-cell” as shown in Fig. 3(a) and there are n+1 number of saltire-cells in the base logic stage. The
logic diagram of the saltire-cell 1s shown in Fig. 3(b), and it is realized by the following logical expression,

Gii =Gi=5-cy,_,:
P.":I' = PI: = S. e (I-T."—|

The external carry-input signal (Cin ) is also taken into consideration for three-operand addition in the
proposed adder technique. This additional carry-input signal (Cin ) 1s taken as input to base logic while
computing the GO (S_ 0 - Cin ) in the first saltire-cell of the base logic. The third stage is the carry
computation stage called “generate and propagate logic” (PG) to pre-compute the carry bit and is the
combination of black and grey cell logics. The logical diagram of black and grey cell 1s shown mn Fig.
3(b) that computes the carry generate Gi: j and propagate Pi: j signals with the following logical
expression,

Gl':j = Gix + Pix - G- I:js

II-'.l':j = Piy - 'r'..‘.'—I:_.l
The number of prefix computation stages for the proposed adder is (log2 n+1), and therefore, the
critical path delay of the proposed adder 1s mainly influenced by this carry propagate chain. The final
stage 1s represented as sum logic in which the “sum (S1)” bits are computed from the carry generate Gi:
Jj and carry propagate Pi bits using the logical expression, Si = (P1 _ Gi—1:0). The carryout signal (Cout )
1s directly obtained from the carry generate bit Gn:0.

IV.PROPOSED CARRY SKIP ADDER:

The structure is based on combining the concatenation and the incrementation schemes [13] with the
Conv-CSKA structure, and hence, 1s denoted by CI-CSKA. It provides us with the ability to use simpler
carry skip logics. The logic replaces 2:1 multiplexers by AOI/OAI compound gates. The gates, which
consist of fewer transistors, have lower delay, area, and smaller power consumption compared with
those of the 2:1 multiplexer [7]. Note that, in this structure, as the carry propagates through the skip
logics, it becomes complemented. Therefore, at the output of the skip logic of even stages, the
complement of the carry 1s generated. The structure has a considerable lower propagation delay with a
slightly smaller area compared with those of the conventional one. Note that while the power
consumptions of the AOI (or OAI) gate are smaller than that of the multiplexer, the power
consumption of the proposed CI-CSKA 1s a little more than that of the conventional one. This is due to
the increase in the number of the gates, which imposes a higher wiring capacitance (in the noncritical
paths). Now, we describe the mnternal structure of the proposed CI-CSKA shown in Fig. 2 in more
detail. The adder contains two N bits mputs, A and B, and Q stages. Fach stage consists of an RCA
block with the size of Mj (j =1, ..., Q). In this structure, the carry input of all the RCA blocks, except
for the first block which 1s Ci, 1s zero (concatenation of the RCA blocks). Therefore, all the blocks
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execute their jobs simultaneously. In this structure, when the first block computes the summation of its
corresponding mput bits (.e., SM1, . . ., S1), and Cl1, the other blocks simultaneously compute the
L ZK 2, ZK g+ for Kj= 1 =1 Mr (j=2,...,Q)], and
also Cj signals. In the proposed structure, the first stage has only one block, which i1s RCA. The stages 2

intermediate results [i.e., {ZK j+*Mj, ..

to Q consist of two blocks of RCA and incrementation. The incrementation block uses the
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Fig2: CI-CSKA structure.

mtermediate results generated by the RCA block and the carry output of the previous stage to calculate
the final summation of the stage. The mternal structure of the incrementation block, which contains a
chain of half-adders (HAs), is shown in Fig. 4. In addition, note that, to reduce the delay considerably,
for computing the carry output of the stage, the carry output of the incrementation block is not used. As
shown m Fig. 2, the skip logic determines the carry output of the j th stage (CO, j ) based on the
mtermediate results of the j th stage and the carry output of the previous stage (CO, j—1) as well as the
carry output of the corresponding RCA block (Cj ). When determining CO, j , these cases may be
encountered. When Cj is equal to one, CO, j will be one. On the other hand, when Cj 1s equal to zero,
if the product of the intermediate results 1s one (zero), the value of CO, j will be the same as CO, j—1
(zero). The reason for using both AOI and OAI compound gates as the skip logics is the inverting
functions of these gates in standard cell libraries. This way the need for an mverter gate, which increases
the power consumption and delay, is eliminated. As shown in Fig., if an AOI 1s used as the skip logic,
the next skip logic should use OAI gate. In addition, another point to mention is that the use of the
proposed skipping structure in the Conv-CSKA structure increases the delay of the critical path
considerably. This originates from the fact that, in the Conv-CSKA, the skip logic (AOI or OAI
compound gates) is not able to bypass the zero carry input until the zero carry input propagates from
the corresponding RCA block. To solve this problem, in the proposed structure, we have used an RCA
block with a carry input of zero (using the concatenation approach). This way, since the RCA block of
the stage does not need to wait for the carry output of the previous stage, the output carries of the blocks
calculated

transistors) compared with the static 2:1 multiplexer (12 transistors), leads to decreases in the area usage

are m parallel. As mentioned before, the use of the static AOI and OAI gates (six
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and delay of the skip logic. In addition, except for the first RCA block, the carry input for all other
blocks 1s zero, and hence, for these blocks, the first adder cell in the RCA chain 1s a HA.

RESULTS:
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Above figure shows base paper method simulation result taken in XILINX-ISE 14.7 with three
operand addition using one three operand adder.
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Fig4: Proposed simulation

Copyright @ 2021 ijearst. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.01, February -2021, Pages: 030-038



An UGC-CARE Approved Group-II Journal www.Jjearst.co.n

Above figure shows proposed carry skip adder simulation result taken in XILINX-ISE 14.7 with three
operand addition using 2 two operand adders.

CONCLUSION:

In this paper, a high-speed area-efficient adder technique and its VLSI architecture is proposed to
perform the three operand binary addition for efficient computation. The proposed three-operand
adder technique 1s a parallel prefix adder that uses four-stage structures to compute the addition of three
mput operands. The novelty of this proposed architecture is the reduction of delay and area in the
prefix computation stages in PG logic and bit-addition logic. As an extension of this concept, a static
CMOS CSKA structure called CI-CSKA was proposed, which exhibits a higher speed and lower energy
consumption compared with those of the conventional one. The speed enhancement was achieved by
modifying the structure through the concatenation and incrementation techniques. In addition, AOI
and OAI compound gates were exploited for the carry skip logics.

FUTURE SCOPE:

In the future work, further research will be done by applying dual-path FP architecture to the three-
operand FP adder and using other redundant FP representations. Use of improved techniques in the
termination phase of the design (i.e., redundant I.ZD, normalization, and rounding) would lead to faster
architectures, though higher area costs are expected.
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